
LowcoBot: Towards Chatting With Low-Code

Platforms

Francisco Martínez-Lasaca1,2, Pablo Díez2, Esther Guerra1 and Juan de Lara1

1Universidad Autónoma de Madrid, Spain
2UGROUND, Madrid, Spain

Abstract

Low-code platforms are gaining momentum, allowing the creation of complex applications directly from
the browser. This allows their use by individuals with a wide range of backgrounds, but they pose some
problems. On the one hand, newcomers may want to grasp the platform capabilities or pinpoint where
can they access some functionality, which may prove difficult without guidance. On the other hand,
their navigability can be complex: their functionality can be distributed across many webpages and user
interfaces, each managing different concepts. Additionally, users may deem more convenient addressing
some tasks using natural language instead of navigating visual interfaces. For these reasons, we introduce
LowcoBot, a model-driven solution to generate LLM-based chatbots out of low-code platform design
models. We demonstrate its capabilities by generating a chatbot for Dandelion+, a low-code platform
built within an industrial context, and showing the range of tasks it supports out-of-the-box.

Keywords

Low-code platforms, Chatbots, Code generation, Model-driven engineering, Large language models

1. Introduction

The foreseeable shortage of software developers in the industry is stimulating the seek for
alternatives to traditional programming. One of these solutions is low-code platforms: cloud
environments where the so-called citizen developers (i.e., tech-savvy users without an IT back-
ground) can create applications thanks to the replacement of code by visual programming [1].
While these platforms strive to provide user-friendly environments, they can be daunting for
newcomers unfamiliar with their capabilities or while working with convoluted projects. For
these reasons, we posit that integrating conversational assistants (i.e., chatbots) into low-code
platforms can improve their navigability by providing users with more ways to interact with
them – see Figure 1 for an example.

In order to develop such chatbots, user requests should be interpreted and responded appro-
priately in natural language. Current large language models (LLMs), such as OpenAI’s GPT1 or
Google’s Gemini2 are suitable candidates for this task, demonstrating high degrees of compre-

First Workshop on Large Language Models For Model Driven Engineering (LLM4MDE 2024)
$ francisco.martinezl01@estudiante.uam.es (F. Martínez-Lasaca); pdiez@uground.com (P. Díez);
esther.guerra@uam.es (E. Guerra); juan.delara@uam.es (J. d. Lara)
� 0000-0003-4384-170X (F. Martínez-Lasaca); 0000-0001-8775-4451 (P. Díez); 0000-0002-2818-2278 (E. Guerra);
0000-0001-9425-6362 (J. d. Lara)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://openai.com/gpt-4
2https://gemini.google.com

mailto:francisco.martinezl01@estudiante.uam.es
mailto:pdiez@uground.com
mailto:esther.guerra@uam.es
mailto:juan.delara@uam.es
https://orcid.org/0000-0003-4384-170X
https://orcid.org/0000-0001-8775-4451
https://orcid.org/0000-0002-2818-2278
https://orcid.org/0000-0001-9425-6362
https://creativecommons.org/licenses/by/4.0
https://openai.com/gpt-4
https://gemini.google.com


Hi, what can I do in Dandelion+?

In Dandelion+, you can engage in a variety of activities centered around developing applications with domain-specific languages (DSLs). Specifically, you can:

Develop metamodels, which are the data structures that define the rules and constraints of your application's domain.

Create models that follow your metamodels, essentially the data that populates your application.

Create and manage workflows to operationalize your models into functioning applications.

Additionally, you have the capability to:

Retrieve roles, users, platforms, models, and metamodels to manage and interact with different aspects of your application ecosystem.

Create workflows to automate processes within your applications.

Dandelion+ also provides tools for sending emails and reporting bugs, enhancing your development experience.

For more information, visit Dandelion+.

Which platforms are available?

The available platforms on Dandelion+ are:

1. Billing system - with 26 users, 3 metamodels, 124 models, 6 roles, and 4 workflows.

2. E-commerce - with 1728 users, 3 metamodels, 7 models, 7 roles, and 9 workflows.

3. Coding Judge - with 4 users, 1 metamodel, 8 models, 3 roles, and 3 workflows.

Talk with Dandelion+ chatbot...

link to the
platform’s homepage

extracted from
the platform’s API

Figure 1: A chatbot generated by LowcoBot for the Dandelion+ low-code platform.

hension over a wide range of user intents [2]. However, interfacing a low-code platform is not
straightforward: it requires a graphical, programmatic, and ontological understanding of it. In
other words, the chatbot must be knowledgeable about the platform’s web interface (the fron-
tend), its API, and its native concepts (e.g., ‘user’, ‘role’, or ‘project’). In order to represent all this
information in a structured and technology-agnostic manner, LowcoBot follows a model-driven
engineering (MDE) approach [3] that allows generating chatbots automatically. As a first step
towards its validation, this paper presents an application of LowcoBot by building a chatbot
for Dandelion+, an industrial model-driven low-code platform currently under development.
The source code of LowcoBot is open source and is available on GitHub.3

The rest of the paper is structured as follows: Section 2 presents our approach, Section 3
describes LowcoBot’s architecture, Section 4 showcases its application with a chatbot for
Dandelion+, Section 5 revises related work, and Section 6 concludes.

2. Approach

Figure 2 presents the steps of our approach, together with the involved components that
comprise a chatbot for a low-code platform.

The user interacts with the chatbot in a chat interface, consisting of a textual input and
the conversation history. To produce sensitive textual responses to user requests, the chatbot
makes use of a large language model (LLM). Moreover, as native cloud environments, low-code
platforms expose REST APIs to operate with them via HTTP requests. These two components,

3https://github.com/LowcoBot/lowcobot

https://github.com/LowcoBot/lowcobot


platform
model

gene-
rates

Chat

PromptLLM LLM
Agent

Tools

1. Configure
LowcoBot

2. Code
generation

3. Start
chatbot

Low-code
platform

REST API

Figure 2: Overview of the approach.

however, must be mediated by an LLM agent to accomplish useful responses. As the “heart” of
the chatbot, the agent must know the internals of the low-code platform, and allow the LLM to
make use of the REST API’s endpoints to resolve the petitions.

To make the LLM agent behave as expected (i.e., so it answers platform-related questions),
the context of the LLM must be augmented. In this work, we make use of the initial prompt
and custom tools to do so. On the one hand, the initial prompt is a textual artifact that is fed
initially to the LLM to instruct it how to behave. In particular, it should be crafted with the
appropriate context so that the LLM can provide satisfying completions for the expected intents
of the chatbot. On the other hand, tools allow the LLM to execute arbitrary code specified on
the chatbot side. Typical LLM tools include code interpreters, arithmetic calculators, or weather
forecast providers. In the context of low-code platforms, tools serve as the foundational blocks
bridging the LLM and the low-code platform’s API.

While the chat interface, the LLM, and the REST API can be easily implemented or consumed,
the contents of the LLM agent vary between platforms. However, tools and prompts can be
automatically derived from configuration files, making them suitable for automation. LowcoBot
exploits this fact to provide a code generation solution, taking a model-driven engineering
approach, to automatically populate tools and the initial prompt from a low-code platform
model specification. Once these are generated, they are wired with scaffold code, resulting
in a functional chatbot. As the case study (Section 4) will show, this approach yields a 10×
improvement versus manual coding in lines of code.

The next subsections explain LowcoBot meta-model, and the generated prompt and tools.

2.1. LowcoBot meta-model

The meta-model of LowcoBot aims to capture the relevant elements in a low-code platform to
produce a conversational chatbot for it. In particular, it focuses on three distinct but interwoven
technological spaces – graphical, programmatic, and ontological:



Chatbot

name : EString
description : EString
apiUrl : EString
frontendUrl : EString

WebEntity

Webpage

title : EString
url : EString
initial : EBoolean = false

AbstractComponent

id : EString
name : EString

PlacedComponent

where : EString

Component

description : EString

Endpoint

url : EString
method : HttpMethod

HttpMethod

GET
POST
PUT
PATCH
DELETE

LinguisticConcept

name : EString

Task

name : EString
description : EString

Intent

Parameter

name : EString

[0..*] webpages [0..*] components [0..*] endpoints [0..*] concepts [0..*] tasks

[0..*] linkedPages [0..*] innerComponents

[0..*] consumes

[1..1] referenced

[0..*] parameters

[1..1] manages

Graphical

Programmatic

Ontological

Figure 3: LowcoBot meta-model, relating the graphical, programmatic, and ontological spaces of a

low-code platform.

Graphical – the web interface Low-code platforms are web applications that are accessed
through a browser and can span across multiple webpages. Being low-code oriented,
these platforms rely on visual metaphors (e.g., tables, diagrams, or forms) that are reused
in different widgets across webpages. This approach aligns with current web application
frameworks, such as React4 or Angular5, whose selling point is the encapsulation of web
widgets into reusable components.

Programmatic – the REST API User operations in the web interface must be reflected on
the server side to make them effective. Low-code platforms typically expose their set of
functionalities through REST APIs, which can be either consumed by the web interface
(thus, being transparent for non-tech users) or by third-party applications. As public
interfaces, APIs define the capabilities of a platform: a platform has a capability if and
only if it has API endpoints covering it.

Ontological – the ubiquitous language Each platform has a different set of concepts related
in different ways. For example, while both Mendix and OutSystems manage ‘roles’,
they may not be operationally equivalent between both development suites. Moreover,
concepts may have different names (signifiers) while pointing to the same conceptual
entity (signified) – for example, ‘flat’ and ‘apartment’. Therefore, specialized chatbots for
low-code platforms must speak the platform’s language. This concept is coined ubiquitous
language in domain-driven design [4], and can be formalized into a linguistic (meta-)model
that defines the concepts of a domain and their relationships.

4https://react.dev
5https://angular.io

https://react.dev
https://angular.io


The resulting meta-model is presented in Figure 3. Note how the meta-model is not exhaustive:
it does not model entirely a platform’s web interface nor its API or ubiquitous language. Instead,
it focuses on capturing the relationships of the entities between the three technological spaces.

Chatbots for low-code platforms have a name and a description, and are determined by the
platform’s frontend and API URLs. Chatbots encompass webpages, components, endpoints,
concepts, and custom tasks. First, webpages have a title and are accessible at a certain URL
(relative to Chatbot.frontendUrl), and can contain components. Components describe widgets
that appear on webpages. They can either be defined directly as Components (with a name and a
description) or by referencing other components and “placing” them using a textual explanation
with PlacedComponent.where. Components can be either nested within other components or
embedded in webpages, following the spirit of web components. In turn, components can
consume API endpoints, which are exposed at a certain URL (relative to Chatbot.apiUrl), and
have an HTTP method. Endpoints, as providers of the interface of the tool’s backend, manage
linguistic concepts (e.g., ‘user’, ‘role’, or ‘project’). Moreover, it may be desirable to expose
endpoints as tools for solving user tasks. Endpoints with isExposed set to true are considered
for this end. Custom Intents can also be specified. Finally, both endpoints and custom intents
can specify parameters as inputs for their execution.

2.2. Generated artifacts: initial prompt and tools

The previous meta-model can be instantiated in a model that contains the information needed
to generate automatically the initial prompt and the tools of a chatbot, for a particular low-code
platform.

On the one hand, the initial prompt is a textual artifact that instructs the LLM to behave as a
chatbot for the low-code platform in question. In particular, the chatbot’s name and description
specified in the model are injected into it, so the LLM has a preliminary idea of the platform it
is interfacing with, even if the platform is initially unknown to the LLM. The initial prompt
also contains boilerplate instructions on how to structure its answers, together with a list of the
available tools and their parameters. As an example, the following code excerpt presents the
first lines of the initial prompt generated for interfacing with the Dandelion+ platform:

You are a chatbot for a low-code platform called “Dandelion+”.

A description about you:

“Dandelion+ is a (meta-)low-code platform aimed at [...]”

Respond to the human as helpfully and accurately as possible.

You have access to the following tools: {tools}. [...]

On the other hand, tools allow the LLM to execute arbitrary code specified on the chatbot
side. Thanks to being exposed in the initial prompt, the LLM can invoke them when deemed
appropriate. LowcoBot leverages this to furnish the LLM with the following tools that help
navigate, explore, or make use of the low-code platform:

Summary tool It permits answering questions like What is this? or What is ⟨tool’s name⟩?
It makes use of the platform’s name, description, pages, and tasks to overview its parts.



Figure 4: A LowcoBot model flattened to a graph, as consumed by the Navigation tool. Highlighted
is the shortest path between the homepage and a Role endpoint. The path is computed to answer

the questionWhere can I change roles? Legend: blue = Webpage, green = (Abstract)Component, salmon =

Endpoint, red = LinguisticConcept.

Additionally, the LLM is hinted to employ this tool when the user greets the chatbot, so
they receive guidance from the beginning.

Navigation tool Exploring new platforms can be daunting for newcomers. For this reason,
this tool answers questions like Where can I ⟨do something⟩ on the platform? To do so, it
generates instructions on how to reach a certain part of the platform’s webpage. Internally,
the tool constructs a graph as a flattened version of the model, where nodes are webpages,
components, endpoints, and linguistic concepts, and edges are any relationship between
them. This graph is then consumed by a graph search algorithm to pinpoint the shortest
path between the homepage of the platform and the targeted entity (cf. Figure 4).

Capabilities tool Platforms manage different linguistic concepts, each with a different set
of capabilities. For example, posts may be created on a social media, but not deleted.



1. Configure
LowcoBot

2. Code
generation

3. Start
chatbot

model
.flexmi

Eclipse environment

lowcobot.emf

Streamlit application

main.py

«conformsTo» config.pygenerate.egx

tools

... .egl

generates

template2.egl

template1.egl

Source
code

Code
generation

LLM

GPT 4

Figure 5: LowcoBot’s architecture.

This tool aims at guiding the user when asking Can I ⟨verb⟩ ⟨concept⟩?, or What can I do
with ⟨concept⟩? If this is possible, the tool will offer the possibility to perform the action
and will inform about its location on the platform. Otherwise, it will inform so, while
detailing alternative available associated intents or endpoints. To do this, the tool checks
the defined endpoints, the linguistic concepts they manage, their HTTP method (e.g., GET,
POST...), and the components (and webpages) where they are consumed.

Intents If the tool has a certain capability, the user expects to be able to use it. In particular,
the Endpoints (those marked as isExposed) and API-agnostic Intents promote to tools,
usable in the chatbot. Endpoints perform the appropriate HTTP requests when invoked,
while agnostic intents delegate their implementation to the chatbot designer. Both can
define parameters (cf. Task in Figure 3), which result in inputs integrated into the chat to
be filled in by the user when the task is triggered (see the last interaction in Figure 6).

3. Architecture

LowcoBot’s architecture comprises two technological spaces: the Eclipse environment and the
Streamlit application (see Figure 5).

The chatbot configuration and code generation steps take place in Eclipse. In this environment,
the user first designs the chatbot in a model conformant to LowcoBot’s meta-model. The model
is expressed in Flexmi [5] (an XML/YAML-flavoured syntax for model specification), whereas
the meta-model uses the Eclipse Modeling Framework (EMF) [6]. Next, this model is consumed
in the code generation step, whose source code works atop Eclipse Epsilon [7]. In particular,
it comprises several Epsilon Generation Language (EGL) templates and an EGL Coordination
Language (EGX) script that orchestrates them. When the transformation is executed, it generates



the chatbot’s tools and the initial prompt. Note that, in order to extend LowcoBot with more
tools, it suffices to create more EGL templates and link them properly in the EGX script.

The generated artifacts are incorporated into a Streamlit application. Streamlit6 is a general-
purpose Python framework for building web applications. In our case, we have implemented
a chat interface backed by a structured chat agent7 defined in Langchain8 – a framework for
LLM development. Langchain is agnostic to the employed LLM, allowing switching it easily.
Our current implementation uses GPT 4.0, which is available via a pay-per-use API. Langchain
also consumes the tools and the initial prompt generated in the previous step directly, as the
templates generate Langchain-specific code. Additionally, the Navigation tool makes use of
the NetworkX 9 Python library for graph traversal operations. Finally, Streamlit supports an
embedded mode, allowing an easy integration into any website via iframe HTML elements.

4. Case Study

As a case study, we employ LowcoBot to generate a chatbot for Dandelion+. This platform
is the evolution of Dandelion [8], a model-driven low-code platform for building other low-
code platforms aimed at solving industrial problems by the firm UGROUND.10 Dandelion+ is
currently under development.

We model Dandelion+ using 36 entities, including 5 webpages, 10 components, 8 endpoints,
6 concepts, and 2 API-agnostic intents (i.e., sending emails and reporting bugs). This model,
expressed in XMI/Flexmi, spans 51 non-empty lines of code (LOC). LowcoBot automatically
generates 14 tools11 and the initial prompt, which add up to 552 Python LOC (without empty
lines or comments), yielding a generated artifacts to specification LOCs ratio of 10×. We
showcase the features of the generated chatbot in two screenshots.

On the one hand, Figure 1 shows an interaction where the user greets the chatbot and it
responds with an overview of the chatbot (Summary tool). Then, the user asks for information
about a low-code concept, which is answered using an endpoint intent. In particular, the tool
associated with this last interaction makes a request to the Dandelion+ REST API to retrieve
the available platforms in the system and construct an answer.

On the other hand, we demonstrate the rest of the tools in Figure 6, where the chatbot is fully
integrated into Dandelion+. First, the user asks for directions on where to perform a specific
action within the web interface, and the chatbot responds with indications and links (Navigation
tool). Then, the user makes a follow-up question regarding the capabilities of a concept, for
which the chatbot informs and suggests their execution (Capabilities tool). Finally, the user
triggers an API-agnostic intent (i.e., reporting a bug), which results in a form with the modeled
parameters for the user to fill in and submit. Currently, the answer for this intent is fixed.
However, given the interest of this scenario from an industrial standpoint, we are working on
predicting assigned developers, priorities, and expected resolution times of tickets using LLMs.

6https://streamlit.io
7https://python.langchain.com/docs/modules/agents/agent_types/structured_chat
8https://www.langchain.com
9https://networkx.org
10https://www.uground.com
11Namely: Summary, Navigation, andCapabilities; 8 for endpoints; 2 for agnostic intents; and 1 for intent coordination.

https://streamlit.io
https://python.langchain.com/docs/modules/agents/agent_types/structured_chat
https://www.langchain.com
https://networkx.org
https://www.uground.com


�������������������������

�������������������������
����������
������	�������������

��� ����������������������
������������
��������������������������������� �����������������������

��� �����������������
�����������
������������������������������������������������������������	����
�������	������������������

������������������

��
���������������������� �	����
���
�����������������������
�����������
�����


������������������������������������	��­����������������	���	����������������
��
������

��	�����������������
�

�������������
�
����������������
��	���������
��������������
���������������������������������������
�

��
�����
�������������������������	���������
�����������������������������������������������������������

�
�����

��������������

�����������

��	��������������������
���������
��
����������������������������	��������
�����������������

�����

�����	�������������������������

Home

Projects

Models

Actions

Resources

Applications

Chatbot

Configuration

Dandelion+ CODING JUDGE Admin AD

Thanks for bringing this to our attention! We have opened the ������������‘Deleting roles’ and

assigned it to C. Garcia with an initial medium priority. The expected resolution time is 2 days.

Navigation
tool

Capabilities 
tool

Executing
an intent

task
parameters

Figure 6: A LowcoBot chatbot integrated into the Dandelion+ platform.

5. Related Work

There have been efforts in the intersection of chatbots, LLMs, modeling, and low-code platforms.
Some works focus on chatbots and modeling. For instance, Socio [9] is a chatbot that produces

UML class diagrams from user descriptions of the domain. The chatbot is based on syntactic
analysis of the user utterances, using the Stanford parser. Later, the advent of LLMs triggered
their use for modeling. For example, Cámara et al. [10] assess ChatGPT for generating UML
models from natural language descriptions. Chaaben et al. [11] use LLMs as assistants for model
completion, and Chen et al. [12] evaluate different LLMs for automated domain modeling. Tools
like Xatkit [13], Conga [14], and DemaBot [15] follow a model-driven approach to designing
chatbots. Other works leverage LLMs for low-code tooling. For example, [16] presents an
LLM-based tool for designing AI pipelines within a dedicated low-code environment, and in
Eclipse GLSP they are currently exploring the potential of AI for improving graphical editors.12

12See Enhancing Modeling Tools with AI: A Leap Towards Smarter Diagrams with Eclipse GLSP

https://eclipsesource.com/blogs/2024/04/12/enhancing-modeling-tools-with-ai-a-leap-towards-smarter-diagrams-with-eclipse-glsp


Some approaches combine chatbots with low-code platforms. In [17], chatbots are generated
for webpages out of their HTML source code, taking into consideration their semantics, links, and
contained information. In contrast, our approach relies on (nested) components and considers
the linguistic concepts managed in each component. In [18], Weber uses a node-based editor to
orchestrate LLM tools for an IoT-targeted chatbot.

Finally, commercial low-code platforms are integrating chatbots as services for their de-
velopment suites. For instance, OutSystems13 and Salesforce14 can generate chatbots out of
customers’ application data. Salesforce also supports dedicated intents that trigger internally
modeled workflows. Appian15 covers these use cases, and employs smaller, task-focused chat-
bots for concrete activities, including model retrieval and diagram construction. Although these
chatbots are specifically crafted for each platform, to our knowledge they lack a conceptual
understanding of the modeled entities and their relations, and their responses do not include
links to help users navigate their platforms.

6. Conclusion and Future Work

This paper has presented LowcoBot, a code generator for chatbots aimed at low-code platforms.
LowcoBot is built following a model-driven approach allowing to capture the graphical, pro-
grammatic, and ontological sides of low-code platforms. The tool derives automatic prompts and
tools that help the user get accustomed to, navigate, and use the platform. We have demonstrated
LowcoBot’s application to the Dandelion+ platform, generating a set of useful introductory
and navigation tools with a generated artifacts to specification ratio of 10× in lines of code.

Currently at UGROUND, we are investigating the potential of model-centric techniques
in chatbot construction. We argue that the future of low/no-code platforms lies in chatbots
specialized in multiple domains, whose scalability, integration, and ease of development are
enabled by a model-driven foundation.

In future work, we plan to support automatic endpoint extraction through Swagger/OpenAPI
specifications [19], provide a concrete syntax for the tool configuration, and extend parameters
for finer typing. Finally, we want to evaluate the followed approach regarding LLM hallucination,
and we intend to introduce defensive mechanisms for when the chatbot is confronted with a
question outside its scope.

Acknowledgments

This project is funded by UGROUND, the Spanish MICINN (PID2021-122270OB-I00, TED2021-
129381B-C21, RED2022-134647-T), and the EU Horizon 2020 Research and Innovation Pro-
gramme under the Marie Skłodowska-Curie grant agreement No 813884.

13https://www.outsystems.com/ai
14https://www.salesforce.com/eu/products/einstein-ai-solutions
15https://appian.com/products/platform/artificial-intelligence.html

https://www.outsystems.com/ai
https://www.salesforce.com/eu/products/einstein-ai-solutions
https://appian.com/products/platform/artificial-intelligence.html


References

[1] D. D. Ruscio, D. S. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, M. Wimmer, Low-code
development and model-driven engineering: Two sides of the same coin?, Softw. Syst.
Model. 21 (2) (2022) 437–446.

[2] W. X. Zhao, et al., A Survey of Large Language Models, https://arxiv.org/abs/2303.18223,
2023.

[3] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in Practice, Second
Edition, Synthesis Lectures on Software Engineering, Morgan & Claypool Publishers, 2017.

[4] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software, Addison-
Wesley, 2004.

[5] D. Kolovos, A. de la Vega, Flexmi: a generic and modular textual syntax for domain-specific
modelling, Software and Systems Modeling 22 (4) (2023) 1197–1215.

[6] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse Modeling Framework,
2nd edition, Pearson Education, 2008.

[7] D. Kolovos, R. F. Paige, F. A. Polack, Eclipse development tools for Epsilon, in: Eclipse
Summit Europe, vol. 20062, 200, 2006.

[8] F. Martínez-Lasaca, P. Díez, E. Guerra, J. de Lara, Dandelion: a scalable, cloud-based
graphical language workbench for industrial low-code development, Journal of Comp.
Langs. 76 (2023) 101217.

[9] S. Pérez-Soler, E. Guerra, J. de Lara, F. Jurado, The rise of the (modelling) bots: towards
assisted modelling via social networks, in: Proc. ASE, IEEE, 723–728, 2017.

[10] J. Cámara, J. Troya, L. Burgueño, A. Vallecillo, On the assessment of generative AI in
modeling tasks: an experience report with ChatGPT and UML, Software and Systems
Modeling 22 (3) (2023) 781–793.

[11] M. B. Chaaben, L. Burgueño, H. A. Sahraoui, Towards using Few-Shot Prompt Learning
for Automating Model Completion, in: Proc. NIER@ICSE, IEEE, 7–12, 2023.

[12] K. Chen, Y. Yang, B. Chen, J. A. H. López, G. Mussbacher, D. Varró, Automated Domain
Modeling with Large Language Models: A Comparative Study, in: Proc. MODELS, IEEE,
162–172, 2023.

[13] S. Pérez-Soler, S. Juarez-Puerta, E. Guerra, J. de Lara, Choosing a Chatbot Development
Tool, IEEE Softw. 38 (4) (2021) 94–103.

[14] S. Pérez-Soler, E. Guerra, J. de Lara, Model-Driven Chatbot Development, in: Proc. ER, vol.
12400 of LNCS, Springer, 207–222, 2020.

[15] B. E. Torres, A. del Río Ortega, M. R. A. de Reyna, DemaBot: a tool to automatically
generate decision-support chatbots, https://ceur-ws.org/Vol-2973/paper_278.pdf, 2021.

[16] N. Rao, J. Tsay, K. Kate, V. Hellendoorn, M. Hirzel, AI for Low-Code for AI, in: Proc. IUI,
Association for Computing Machinery, New York, NY, USA, 837–852, 2024.

[17] P. Chittò, M. Baez, F. Daniel, B. Benatallah, Automatic Generation of Chatbots for Conver-
sational Web Browsing, in: Proc. ER, Springer, 239–249, 2020.

[18] I. Weber, Low-code from frontend to backend: Connecting conversational user interfaces
to backend services via a low-code IoT platform, in: Proc. CUI, ACM, 37:1–37:5, 2021.

[19] H. Ed-douibi, J. L. Cánovas Izquierdo, F. Bordeleau, J. Cabot, WAPIml: Towards a Modeling
Infrastructure for Web APIs, in: Proc. MODELS Companion (MODELS-C), 748–752, 2019.

https://arxiv.org/abs/2303.18223
https://ceur-ws.org/Vol-2973/paper_278.pdf

	1 Introduction
	2 Approach
	2.1 LowcoBot meta-model
	2.2 Generated artifacts: initial prompt and tools

	3 Architecture
	4 Case Study
	5 Related Work
	6 Conclusion and Future Work

